Malignant melanoma is considered one of the deadliest skin diseases if ignored without treatment. The mortality rate caused by melanoma is more than two times that of other skin malignancy diseases. These facts encourage computer scientists to find automated methods to discover skin cancers. Nowadays, the analysis of skin images is widely used by assistant physicians to discover the first stage of the disease automatically. One of the challenges the computer science researchers faced when developing such a system is the un-clarity of the existing images, such as noise like shadows, low contrast, hairs, and specular reflections, which complicates detecting the skin lesions in that images. This paper proposes the solution to the problem mentioned earlier using the active contour method. Still, seed selection in the dynamic contour method has the main drawback of where it should start the segmentation process. This paper uses Gaussian filter-based maximum entropy and morphological processing methods to find automatic seed points for active contour. By incorporating this, it can segment the lesion from dermoscopic images automatically. Our proposed methodology tested quantitative and qualitative measures on standard dataset dermis and used to test the proposed method's reliability which shows encouraging results.
Entropy and Gaussian Filter-Based Adaptive Active Contour for Segmentation of Skin Lesions.
阅读:3
作者:Mustafa Saleem, Iqbal Muhammad Waseem, Rana Toqir A, Jaffar Arfan, Shiraz Muhammad, Arif Muhammad, Chelloug Samia Allaoua
| 期刊: | Computational Intelligence and Neuroscience | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Jul 19; 2022:4348235 |
| doi: | 10.1155/2022/4348235 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
