Spatial transcriptomics (ST technology allows for the detection of cellular transcriptome information while preserving the spatial location of cells. This capability enables researchers to better understand the cellular heterogeneity, spatial organization, and functional interactions in complex biological systems. However, current technological methods are limited by low resolution, which reduces the accuracy of gene expression levels. Here, we propose scstGCN, a multimodal information fusion method based on Vision Transformer and Graph Convolutional Network that integrates histological images, spot-based ST data and spatial location information to infer super-resolution gene expression profiles at single-cell level. We evaluated the accuracy of the super-resolution gene expression profiles generated on diverse tissue ST datasets with disease and healthy by scstGCN along with their performance in identifying spatial patterns, conducting functional enrichment analysis, and tissue annotation. The results show that scstGCN can predict super-resolution gene expression accurately and aid researchers in discovering biologically meaningful differentially expressed genes and pathways. Additionally, scstGCN can segment and annotate tissues at a finer granularity, with results demonstrating strong consistency with coarse manual annotations. Our source code and all used datasets are available at https://github.com/wenwenmin/scstGCN and https://zenodo.org/records/12800375.
Inferring single-cell resolution spatial gene expression via fusing spot-based spatial transcriptomics, location, and histology using GCN.
阅读:6
作者:Xue Shuailin, Zhu Fangfang, Chen Jinyu, Min Wenwen
| 期刊: | Briefings in Bioinformatics | 影响因子: | 7.700 |
| 时间: | 2024 | 起止号: | 2024 Nov 22; 26(1):bbae630 |
| doi: | 10.1093/bib/bbae630 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
