It is well known that fabrication processes inevitably lead to defects in the manufactured components. However, thanks to the new capabilities of the manufacturing procedures that have emerged during the last decades, the number of imperfections has diminished while numerical models can describe the ground truth designs. Even so, a variety of defects has not been studied yet, let alone the coupling among them. This paper aims to characterise the buckling response of Variable Stiffness Composite (VSC) plates subjected to spatially varying fibre volume content as well as fibre misalignments, yielding a multiscale sensitivity analysis. On the one hand, VSCs have been modelled by means of the Carrera Unified Formulation (CUF) and a layer-wise (LW) approach, with which independent stochastic fields can be assigned to each composite layer. On the other hand, microscale analysis has been performed by employing CUF-based Mechanics of Structure Genome (MSG), which was used to build surrogate models that relate the fibre volume fraction and the material elastic properties. Then, stochastic buckling analyses were carried out following a multiscale Monte Carlo analysis to characterise the buckling load distributions statistically. Eventually, it was demonstrated that this multiscale sensitivity approach can be accelerated by an adequate usage of sampling techniques and surrogate models such as Polynomial Chaos Expansion (PCE). Finally, it has been shown that sensitivity is greatly affected by nominal fibre orientation and the multiscale uncertainty features.
Buckling Sensitivity of Tow-Steered Plates Subjected to Multiscale Defects by High-Order Finite Elements and Polynomial Chaos Expansion.
阅读:4
作者:Sanchez-Majano Alberto Racionero, Pagani Alfonso, Petrolo Marco, Zhang Chao
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2021 | 起止号: | 2021 May 21; 14(11):2706 |
| doi: | 10.3390/ma14112706 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
