Indirect supervision applied to COVID-19 and pneumonia classification.

阅读:5
作者:Danilov Viacheslav V, Proutski Alex, Karpovsky Alex, Kirpich Alexander, Litmanovich Diana, Nefaridze Dato, Talalov Oleg, Semyonov Semyon, Koniukhovskii Vladimir, Shvartc Vladimir, Gankin Yuriy
The novel coronavirus 19 (COVID-19) continues to have a devastating effect around the globe, leading many scientists and clinicians to actively seek to develop new techniques to assist with the tackling of this disease. Modern machine learning methods have shown promise in their adoption to assist the healthcare industry through their data and analytics-driven decision making, inspiring researchers to develop new angles to fight the virus. In this paper, we aim to develop a CNN-based method for the detection of COVID-19 by utilizing patients' chest X-ray images. Developing upon the inclusion of convolutional units, the proposed method makes use of indirect supervision based on Grad-CAM. This technique is used in the training process where Grad-CAM's attention heatmaps support the network's predictions. Despite recent progress, scarcity of data has thus far limited the development of a robust solution. We extend upon existing work by combining publicly available data across 5 different sources and carefully annotate the comprising images across three categories: normal, pneumonia, and COVID-19. To achieve a high classification accuracy, we propose a training pipeline based on indirect supervision of traditional classification networks, where the guidance is directed by an external algorithm. With this method, we observed that the widely used, standard networks can achieve an accuracy comparable to tailor-made models, specifically for COVID-19, with one network in particular, VGG-16, outperforming the best of the tailor-made models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。