Mixed signal analog/digital neuromorphic circuits represent an ideal medium for reproducing bio-physically realistic dynamics of biological neural systems in real-time. However, similar to their biological counterparts, these circuits have limited resolution and are affected by a high degree of variability. By developing a recurrent spiking neural network model of the retinocortical visual pathway, we show how such noisy and heterogeneous computing substrate can produce linear receptive fields tuned to visual stimuli with specific orientations and spatial frequencies. Compared to strictly feed-forward schemes, the model generates highly structured Gabor-like receptive fields of any phase symmetry, making optimal use of the hardware resources available in terms of synaptic connections and neuron numbers. Experimental results validate the approach, demonstrating how principles of neural computation can lead to robust sensory processing electronic systems, even when they are affected by high degree of heterogeneity, e.g., due to the use of analog circuits or memristive devices.
Recurrent models of orientation selectivity enable robust early-vision processing in mixed-signal neuromorphic hardware.
阅读:4
作者:Baruzzi Valentina, Indiveri Giacomo, Sabatini Silvio P
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jan 2; 16(1):243 |
| doi: | 10.1038/s41467-024-55749-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
