Traditional Chinese medicine (TCM) is typically prescribed as formula to treat certain symptoms. A TCM formula contains hundreds of chemical components, which makes it complicated to elucidate the molecular mechanisms of TCM. Here, we proposed a computational systems pharmacology approach consisting of network link prediction, statistical analysis, and bioinformatics tools to investigate the molecular mechanisms of TCM formulae. Taking formula Tian-Ma-Gou-Teng-Yin as an example, which shows pharmacological effects on Alzheimer's disease (AD) and its mechanism is unclear, we first identified 494 formula components together with corresponding 178 known targets, and then predicted 364 potential targets for these components with our balanced substructure-drug-target network-based inference method. With Fisher's exact test and statistical analysis we identified 12 compounds to be most significantly related to AD. The target genes of these compounds were further enriched onto pathways involved in AD, such as neuroactive ligand-receptor interaction, serotonergic synapse, inflammatory mediator regulation of transient receptor potential channel and calcium signaling pathway. By regulating key target genes, such as ACHE, HTR2A, NOS2, and TRPA1, the formula could have neuroprotective and anti-neuroinflammatory effects against the progression of AD. Our approach provided a holistic perspective to study the relevance between TCM formulae and diseases, and implied possible pharmacological effects of TCM components.
A Computational Systems Pharmacology Approach to Investigate Molecular Mechanisms of Herbal Formula Tian-Ma-Gou-Teng-Yin for Treatment of Alzheimer's Disease.
阅读:3
作者:Wang Tianduanyi, Wu Zengrui, Sun Lixia, Li Weihua, Liu Guixia, Tang Yun
| 期刊: | Frontiers in Pharmacology | 影响因子: | 4.800 |
| 时间: | 2018 | 起止号: | 2018 Jun 26; 9:668 |
| doi: | 10.3389/fphar.2018.00668 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
