Dissipative Particle Dynamics Simulations for Shape Change of Growing Lipid Bilayer Vesicles.

阅读:3
作者:Mitsuhashi Hiromi, Morikawa Ryota, Noguchi Yoh, Takasu Masako
The characteristic shape changes observed in the growth and division of L-form cells have been explained by several theoretical studies and simulations using a vesicle model in which the membrane area increases with time. In those theoretical studies, characteristic shapes such as tubulation and budding were reproduced in a non-equilibrium state, but it was not possible to incorporate deformations that would change the topology of the membrane. We constructed a vesicle model in which the area of the membrane increases using coarse-grained particles and analyzed the changes in the shape of growing membrane by the dissipative particle dynamics (DPD) method. In the simulation, lipid molecules were added to the lipid membrane at regular time intervals to increase the surface area of the lipid membrane. As a result, it was found that the vesicle deformed into a tubular shape or a budding shape depending on the conditions for adding lipid molecules. This suggests that the difference in the place where new lipid molecules are incorporated into the cell membrane during the growth of L-form cells causes the difference in the transformation pathway of L-form cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。