Lipidomic analysis of skeletal muscle tissues of p53 knockout mice by nUPLC-ESI-MS/MS.

阅读:3
作者:Park Se Mi, Byeon Seul Kee, Lee Hojun, Sung Hyerim, Kim Il Yong, Seong Je Kyung, Moon Myeong Hee
Tumour suppressor p53 is known to be associated with the maintenance of mitochondrial functional properties in the skeletal muscles. As deactivation or mutation of p53 can affect the synthesis of lipids, investigating the relationship between p53-related energy generation metabolism and perturbation of lipid profile is critical. In this study, 329 lipid species (among 412 identified species) in two different skeletal muscle tissues (the gastrocnemius and soleus) from p53 knockout (KO) mice were quantitatively analysed using nanoflow ultrahigh performance liquid chromatography tandem mass spectrometry (nUPLC-MS/MS). Overall, lipids from the soleus tissues were more affected by p53 KO than those from the gastrocnemius in most lipid profiles. In p53 KO, lysophosphatidylcholine (LPC), lysophosphatidylserine (LPS), phosphatidic acid (PA), sphingomyelin (SM), and triacylglycerol (TAG), including 6 TAG (44:2, 46:0, 58:5, 58:8, 58:9, and 50:0), were significantly increased (p < 0.05) by 1.4-2-fold only in the soleus tissue. Overall monohexosylceramide (MHC) levels, including those of 3 MHC species (d18:0/24:0, d18:1/22:0, and d18:1/24:0), were significantly increased (p < 0.05) by 2-4 fold, only in the gastrocnemius tissue. The results suggest that lipid profiles are significantly altered by the lack of p53 in muscle tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。