α-Synuclein misfolding assessed with single molecule AFM force spectroscopy: effect of pathogenic mutations.

阅读:3
作者:Krasnoslobodtsev Alexey V, Volkov Ivan L, Asiago Josephat M, Hindupur Jagadish, Rochet Jean-Christophe, Lyubchenko Yuri L
Misfolding and subsequent aggregation of alpha-synuclein (α-Syn) protein are critically involved in the development of several neurodegenerative diseases, including Parkinson's disease (PD). Three familial single point mutations, A30P, E46K, and A53T, correlate with early onset PD; however, the molecular mechanism of the effects of these mutations on the structural properties of α-Syn and its propensity to misfold remains unclear. Here, we address this issue utilizing a single molecule AFM force spectroscopy approach in which structural details of dimers formed by all four variants of α-Syn are characterized. Analysis of the force spectroscopy data reflecting contour length distribution for α-Syn dimer dissociation suggests that multiple segments are involved in the assembly of the dimer. The interactions are not limited to the central nonamyloid-beta component (NAC) of the protein but rather expand beyond this segment. All three mutations alter the protein's folding and interaction patterns affecting interactions far beyond their immediate locations. Implementation of these findings to our understanding of α-Syn aggregation pathways is discussed.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。