This study addresses the limitations of traditional sports rehabilitation, emphasizing the need for improved accuracy and response speed in real-time action detection and recognition in complex rehabilitation scenarios. We propose the STA-C3DL model, a deep learning framework that integrates 3D Convolutional Neural Networks (C3D), Long Short-Term Memory (LSTM) networks, and spatiotemporal attention mechanisms to capture nuanced action dynamics more precisely. Experimental results on multiple datasets, including NTU RGB + D, Smarthome Rehabilitation, UCF101, and HMDB51, show that the STA-C3DL model significantly outperforms existing methods, achieving up to 96.42% accuracy and an F1 score of 95.83% on UCF101, with robust performance across other datasets. The model demonstrates particular strength in handling real-time feedback requirements, highlighting its practical application in enhancing rehabilitation processes. This work provides a powerful, accurate tool for action recognition, advancing the application of deep learning in rehabilitation therapy and offering valuable support to therapists and researchers. Future research will focus on expanding the model's adaptability to unconventional and extreme actions, as well as its integration into a wider range of rehabilitation settings to further support individualized patient recovery.
Action recognition in rehabilitation: combining 3D convolution and LSTM with spatiotemporal attention.
阅读:4
作者:Yang Fan, Li Shiyu, Sun Chang, Li Xingjiang, Xiao Zhangbo
| 期刊: | Frontiers in Physiology | 影响因子: | 3.400 |
| 时间: | 2024 | 起止号: | 2024 Dec 2; 15:1472380 |
| doi: | 10.3389/fphys.2024.1472380 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
