The interaction of ionizing radiation with matter is of critical importance in numerous areas of science and technology like space and vacuum technology and even medicine and biotechnology. Secondary electron emission is a consequence of electron irradiation on materials. We achieve extremely low secondary electron emission yield values smaller than 0.2, even up to incident electron energies ~1âkeV, due to an undocumented synergy between neighbouring metal and dielectric domains in composite samples. To investigate this experimental discovery, we propose a simple 3D model where the dielectric and metallic domains are arranged in parallel and interleaved. The proposed surface profile has a triangular shape to model the surface roughness. We obtain a continuous equation to describe the electric field that arises between grounded conductors and charged dielectrics domains. The calculated trajectories of secondary electrons in this 3D geometry are used to predict dynamic secondary emission yield, which strongly depends on the charge accumulated in the dielectric domains. This research paves the way to design new materials of low secondary emission yield, addressing the technological problem not yet resolved to inhibit the electron avalanche in RF equipment that limit their maximum working power.
Dynamic secondary electron emission in rough composite materials.
阅读:7
作者:Olano Leandro, Dávila Maria E, Dennison John R, MartÃn-Iglesias Petronilo, Montero Isabel
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2019 | 起止号: | 2019 Sep 27; 9(1):13967 |
| doi: | 10.1038/s41598-019-50353-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
