Duty Cycle of Deformational Loading Influences the Growth of Engineered Articular Cartilage.

阅读:3
作者:Ng Kenneth W, Mauck Robert L, Wang Christopher C-B, Kelly Terri-Ann N, Ho Mandy M-Y, Chen Faye Hui, Ateshian Gerard A, Hung Clark T
This study examines how variations in the duty cycle (the duration of applied loading) of deformational loading can influence the mechanical properties of tissue engineered cartilage constructs over one month in bioreactor culture. Dynamic loading was carried out with three different duty cycles: 1 h on/1 h off for a total of 3 h loading/day, 3 h continuous loading, or 6 h of continuous loading per day, with all loading performed 5 days/week. All loaded groups showed significant increases in Young's modulus after one month (vs. free swelling controls), but only loading for a continuous 3 and 6 h showed significant increases in dynamic modulus by this time point. Histological analysis showed that dynamic loading can increase cartilage oligomeric matrix protein (COMP) and collagen types II and IX, as well as prevent the formation of a fibrous capsule around the construct. Type II and IX collagen deposition increased with increased with duration of applied loading. These results point to the efficacy of dynamic deformational loading in the mechanical preconditioning of engineered articular cartilage constructs. Furthermore, these results highlight the ability to dictate mechanical properties with variations in mechanical input parameters, and the possible importance of other cartilage matrix molecules, such as COMP, in establishing the functional material properties of engineered constructs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。