Despite increased understanding about psoriasis pathophysiology, currently there is a lack of predictive computational models. We developed a personalisable ordinary differential equations model of human epidermis and psoriasis that incorporates immune cells and cytokine stimuli to regulate the transition between two stable steady states of clinically healthy (non-lesional) and disease (lesional psoriasis, plaque) skin. In line with experimental data, an immune stimulus initiated transition from healthy skin to psoriasis and apoptosis of immune and epidermal cells induced by UVB phototherapy returned the epidermis back to the healthy state. Notably, our model was able to distinguish disease flares. The flexibility of our model permitted the development of a patient-specific "UVB sensitivity" parameter that reflected subject-specific sensitivity to apoptosis and enabled simulation of individual patients' clinical response trajectory. In a prospective clinical study of 94 patients, serial individual UVB doses and clinical response (Psoriasis Area Severity Index) values collected over the first three weeks of UVB therapy informed estimation of the "UVB sensitivity" parameter and the prediction of individual patient outcome at the end of phototherapy. An important advance of our model is its potential for direct clinical application through early assessment of response to UVB therapy, and for individualised optimisation of phototherapy regimes to improve clinical outcome. Additionally by incorporating the complex interaction of immune cells and epidermal keratinocytes, our model provides a basis to study and predict outcomes to biologic therapies in psoriasis.
Individualised computational modelling of immune mediated disease onset, flare and clearance in psoriasis.
阅读:2
作者:Shmarov Fedor, Smith Graham R, Weatherhead Sophie C, Reynolds Nick J, Zuliani Paolo
| 期刊: | PLoS Computational Biology | 影响因子: | 3.600 |
| 时间: | 2022 | 起止号: | 2022 Sep 30; 18(9):e1010267 |
| doi: | 10.1371/journal.pcbi.1010267 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
