Bioremediation of Textile Industrial Effluents Using Nutraceutical Industrial Spent: Laboratory-Scale Demonstration of Circular Economy.

阅读:4
作者:Taqui Syed Noeman, Syed Usman Taqui, Syed Raihan Taqui, Alqahtani Mohammed Saeed, Abbas Mohamed, Syed Akheel Ahmed
This research reports the first-ever study on abundantly available, environmentally friendly, low-cost and ready-for-use Nutraceutical Industrial Cumin Seed Spent (NICUS) as an innovative adsorbent for bioremediation of a bisazo Acid Red 119 (AR119) dye, a probable mutagen from textile industrial effluents (TIEs). The experiment at the laboratory scale is designed to suit the concepts of sustainability and valorisation under the domain of circular economy. The experimental q(e) value obtained was 96.00 mg g(-1). The optimised conditions of parameters are as follows: pH of 2; adsorption time, 210 min; adsorbent dosage, 0.300 g L(-1); particle size, 175 µM; initial dye concentration, 950 mg L(-1); orbital shaking, 165 rpm and temperature, 50 °C, producing an impressive value of 748 mg of dye adsorbing on 1 g of dry NICUS. The adsorption capacity of NICUS obtained from the quadratic model developed for process optimisation gave values of 748 mg g(-1). As a prelude to commercialisation, five variables that affect the adsorption process were experimentally studied. For the feasibility and efficiency of the process, a two-level fractional factorial experimental design (FFED) was applied to identify variables that influence the adsorption capacity of NICUS. The identified variables were applied to scale experiments by three orders. Nine isotherm models were used to analyse the adsorption equilibrium data. The Vieth-Sladek adsorption isotherm model was found to be the best fit. The pseudo-second-order reaction was the appropriate mechanism for the overall rate of the adsorption process. Mechanistic studies related to mass transfer phenomena were more likely to be dominant over the diffusion process. Techniques such as SEM, FTIR and CHN analysis were used to characterise NICUS. The dye-adsorbed NICUS obtained as "sludge" was used as a reinforcing material for the fabrication of composites using plastic waste. The physicomechanical and chemical properties of thermoplastic and thermoset composite using dye-adsorbed NICUS were evaluated and compared with NICUS composites. Prospects of integrating Small and Medium Enterprises (SMEs) into the circular economy of Nutraceutical Industrial Spent (NIS) are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。