BACKGROUND: There is a widening gap between the throughput of massive parallel sequencing machines and the ability to analyze these sequencing data. Traditional assembly methods requiring long execution time and large amount of memory on a single workstation limit their use on these massive data. RESULTS: This paper presents a highly scalable assembler named as SWAP-Assembler for processing massive sequencing data using thousands of cores, where SWAP is an acronym for Small World Asynchronous Parallel model. In the paper, a mathematical description of multi-step bi-directed graph (MSG) is provided to resolve the computational interdependence on merging edges, and a highly scalable computational framework for SWAP is developed to automatically preform the parallel computation of all operations. Graph cleaning and contig extension are also included for generating contigs with high quality. Experimental results show that SWAP-Assembler scales up to 2048 cores on Yanhuang dataset using only 26 minutes, which is better than several other parallel assemblers, such as ABySS, Ray, and PASHA. Results also show that SWAP-Assembler can generate high quality contigs with good N50 size and low error rate, especially it generated the longest N50 contig sizes for Fish and Yanhuang datasets. CONCLUSIONS: In this paper, we presented a highly scalable and efficient genome assembly software, SWAP-Assembler. Compared with several other assemblers, it showed very good performance in terms of scalability and contig quality. This software is available at: https://sourceforge.net/projects/swapassembler.
SWAP-Assembler: scalable and efficient genome assembly towards thousands of cores.
阅读:5
作者:Meng Jintao, Wang Bingqiang, Wei Yanjie, Feng Shengzhong, Balaji Pavan
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2014 | 起止号: | 2014;15 Suppl 9(Suppl 9):S2 |
| doi: | 10.1186/1471-2105-15-S9-S2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
