Early identification and treatment of moderate cognitive impairment (MCI) can halt or postpone Alzheimer's disease (AD) and preserve brain function. For prompt diagnosis and AD reversal, precise prediction in the early and late phases of MCI is essential. This research investigates multimodal framework-based multitask learning in the following situations: (1) Differentiating early mild cognitive impairment (eMCI) from late MCI and (2) predicting when an MCI patient would acquire AD. Clinical data and two radiomics features on three brain areas deduced from magnetic resonance imaging were investigated (MRI). We proposed an attention-based module, Stack Polynomial Attention Network (SPAN), to firmly encode clinical and radiomics data input characteristics for successful representation from a small dataset. To improve multimodal data learning, we computed a potent factor using adaptive exponential decay (AED). We used experiments from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort study, which included 249 eMCI and 427 lMCI participants at baseline visits. The proposed multimodal strategy yielded the best c-index score in time prediction of MCI to AD conversion (0.85) and the best accuracy in MCI-stage categorization ([Formula: see text]). Moreover, our performance was equivalent to that of contemporary research.
Multimodal multitask learning for predicting MCI to AD conversion using stacked polynomial attention network and adaptive exponential decay.
阅读:4
作者:Ho Ngoc-Huynh, Jeong Yang-Hyung, Kim Jahae
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2023 | 起止号: | 2023 Jul 11; 13(1):11243 |
| doi: | 10.1038/s41598-023-37500-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
