Agent-based modelling is a useful approach for capturing heterogeneity in disease transmission. In this study, a synthetic population was developed for American Samoa using an iterative approach based on population census, questionnaire survey and land use data. The population will be used as the basis for a new agent-based model, intended specifically to fill the knowledge gaps about lymphatic filariasis transmission and elimination, but also to be readily adaptable to model other infectious diseases. The synthetic population was characterized by the statistically realistic population and household structure, and high-resolution geographic locations of households. The population was simulated over 40 years from 2010 to 2050. The simulated population was compared to estimates and projections of the U.S. Census Bureau. The results showed the total population would continuously decrease due to the observed large number of emigrants. Population ageing was observed, which was consistent with the latest two population censuses and the Bureau's projections. The sex ratios by age groups were analysed and indicated an increase in the proportion of males in age groups 0-14 and 15-64. The household size followed a Gaussian distribution with an average size of around 5.0 throughout the simulation, slightly less than the initial average size 5.6.
A Synthetic Population for Modelling the Dynamics of Infectious Disease Transmission in American Samoa.
阅读:3
作者:Xu Zhijing, Glass Kathryn, Lau Colleen L, Geard Nicholas, Graves Patricia, Clements Archie
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2017 | 起止号: | 2017 Dec 1; 7(1):16725 |
| doi: | 10.1038/s41598-017-17093-8 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
