Skin cancer is a serious disease that affects people all over the world. Melanoma is an aggressive form of skin cancer, and early detection can significantly reduce human mortality. In the United States, approximately 97,610 new cases of melanoma will be diagnosed in 2023. However, challenges such as lesion irregularities, low-contrast lesions, intraclass color similarity, redundant features, and imbalanced datasets make improved recognition accuracy using computerized techniques extremely difficult. This work presented a new framework for skin lesion recognition using data augmentation, deep learning, and explainable artificial intelligence. In the proposed framework, data augmentation is performed at the initial step to increase the dataset size, and then two pretrained deep learning models are employed. Both models have been fine-tuned and trained using deep transfer learning. Both models (Xception and ShuffleNet) utilize the global average pooling layer for deep feature extraction. The analysis of this step shows that some important information is missing; therefore, we performed the fusion. After the fusion process, the computational time was increased; therefore, we developed an improved Butterfly Optimization Algorithm. Using this algorithm, only the best features are selected and classified using machine learning classifiers. In addition, a GradCAM-based visualization is performed to analyze the important region in the image. Two publicly available datasets-ISIC2018 and HAM10000-have been utilized and obtained improved accuracy of 99.3% and 91.5%, respectively. Comparing the proposed framework accuracy with state-of-the-art methods reveals improved and less computational time.
A novel framework of multiclass skin lesion recognition from dermoscopic images using deep learning and explainable AI.
阅读:4
作者:Ahmad Naveed, Shah Jamal Hussain, Khan Muhammad Attique, Baili Jamel, Ansari Ghulam Jillani, Tariq Usman, Kim Ye Jin, Cha Jae-Hyuk
| 期刊: | Frontiers in Oncology | 影响因子: | 3.300 |
| 时间: | 2023 | 起止号: | 2023 Jun 6; 13:1151257 |
| doi: | 10.3389/fonc.2023.1151257 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
