Background and Objectives: Acrylic resins remain the materials of choice for removable prosthesis due to their indisputable qualities. The continuous evolution in the field of dental materials offers practitioners today a multitude of therapeutic options. With the development of digital technologies, including both subtractive and additive methods, workflow has been considerably reduced and the precision of prosthetic devices has increased. The superiority of prostheses made by digital methods compared to conventional prostheses is much debated in the literature. Our study's objective was to compare the mechanical and surface properties of three types of resins used in conventional, subtractive, and additive technologies and to determine the optimal material and the most appropriate technology to obtain removable dentures with the highest mechanical longevity over time. Materials and Methods: For the mechanical tests, 90 samples were fabricated using the conventional method (heat curing), CAD/CAM milling, and 3D printing technology. The samples were analyzed for hardness, roughness, and tensile tests, and the data were statistically compared using Stata 16.1 software (StataCorp, College Station, TX, USA). A finite element method was used to show the behavior of the experimental samples in terms of the crack shape and its direction of propagation. For this assessment the materials had to be designed inside simulation software that has similar mechanical properties to those used for obtaining specimens for tensile tests. Results: The results of this study suggested that CAD/CAM milled samples showed superior surface characteristics and mechanical properties, comparable with conventional heat-cured resin samples. The propagation direction predicted by the finite element analysis (FEA) software was similar to that observed in a real-life specimen subjected to a tensile test. Conclusions: Removable dentures made from heat-cured resins remain a clinically acceptable option due to their surface quality, mechanical properties, and affordability. Three-dimensional printing technology can be successfully used as a provisional or emergency therapeutic solution. CAD/CAM milled resins exhibit the best mechanical properties with great surface finishes compared to the other two processing methods.
Experimental Study on Mechanical Properties of Different Resins Used in Oral Environments.
阅读:7
作者:Baciu Elena-Raluca, Savin Carmen Nicoleta, Tatarciuc Monica, MârÈu Ioana, Butnaru Oana Maria, Aungurencei Andra Elena, Mihalache Andrei-Marius, Diaconu-Popa Diana
| 期刊: | Medicina-Lithuania | 影响因子: | 2.400 |
| 时间: | 2023 | 起止号: | 2023 May 28; 59(6):1042 |
| doi: | 10.3390/medicina59061042 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
