Molecular dynamics-guided reaction discovery reveals endoperoxide-to-alkoxy radical isomerization as key branching point in α-pinene ozonolysis.

阅读:3
作者:Yang Huan, Raucci Umberto, Iyer Siddharth, Hasan Galib, Golin Almeida Thomas, Barua Shawon, Savolainen Anni, Kangasluoma Juha, Rissanen Matti, Vehkamäki Hanna, Kurtén Theo
Secondary organic aerosols (SOAs) significantly impact Earth's climate and human health. Although the oxidation of volatile organic compounds (VOCs) has been recognized as the major contributor to the atmospheric SOA budget, the mechanisms by which this process produces SOA-forming highly oxygenated organic molecules (HOMs) remain unclear. A major challenge is navigating the complex chemical landscape of these transformations, which traditional hypothesis-driven methods fail to thoroughly investigate. Here, we explore the oxidation of α-pinene, a critical atmospheric biogenic VOC, using a novel reaction discovery approach based on molecular dynamics and state-of-the-art enhanced sampling techniques. Our approach successfully identifies all established reaction pathways of α-pinene ozonolysis, as well as discovers multiple novel species and pathways without relying on a priori chemical knowledge. In particular, we unveil a key branching point that leads to the rapid formation of alkoxy radicals, whose high and diverse reactivity help to explain hitherto unexplained oxidation pathways suggested by mass spectral peaks observed in α-pinene ozonolysis experiments. This branching point is likely prevalent across a variety of atmospheric VOCs and could be crucial in establishing the missing link to SOA-forming HOMs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。