Online chicken carcass volume estimation using depth imaging and 3-D reconstruction.

阅读:7
作者:Nyalala Innocent, Jiayu Zhang, Zixuan Chen, Junlong Chen, Chen Kunjie
Variability in the size of slaughtered chickens remains a longstanding challenge in the standardization of the poultry industry. To address this issue, we present a novel approach that uses volume as a grading metric for chicken carcasses. This innovative method, unexplored in existing studies, employs real-time data capture of moving chicken carcasses on a production line using Kinect v2 depth imaging and 3-D reconstruction technologies. The captured depth images are processed into point clouds followed by 3-D reconstruction. Volume is calculated from the reconstructed models using the surface integration method, and additional 2-D and 3-D features are extracted as input parameters for machine learning models. Multiple regression models were evaluated, with the bagged tree model demonstrating superior performance, achieving an R² value of 0.9988, RMSE of 5.335, and ARE of 2.125%. Furthermore, our method showed remarkable efficiency with an average processing time of less than 1.6 seconds per carcass. These results indicate that our novel approach fills a critical gap in existing automated grading methodologies by offering both accuracy and efficiency. This validates the applicability of depth imaging, 3-D reconstruction, and machine learning for estimating chicken carcass volume with high precision, thereby enabling a more comprehensive, efficient, and reliable chicken carcass grading system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。