Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism.

阅读:3
作者:Ding Lin, Chang Mengru, Guo Ying, Zhang Lingyu, Xue Changhu, Yanagita Teruyoshi, Zhang Tiantian, Wang Yuming
BACKGROUND: Recently, trimethylamine-N-oxide (TMAO) plasma levels have been proved to be associated with atherosclerosis development. Among the targets aimed to ameliorating atherosclerotic lesions, inducing bile acid synthesis to eliminate excess cholesterol in body is an effective way. Individual bile acid as endogenous ligands for the nuclear receptor has differential effects on regulating bile acid metabolism. It is unclear whether bile acid profiles are mechanistically linked to TMAO-induced development of atherosclerosis. METHODS: Male apoE(-/-) mice were fed with control diet containing 0.3% TMAO for 8 weeks. Aortic lesion development and serum lipid profiles were determined. Bile acid profiles in bile, liver and serum were measured by liquid chromatographic separation and mass spectrometric detection (LC-MS). Real-time PCRs were performed to analyze mRNA expression of genes related to hepatic bile acid metabolism. RESULTS: The total plaque areas in the aortas strongly increased 2-fold (P < 0.001) in TMAO administration mice. The levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) in TMAO group were also significantly increased by 25.5% (P = 0.044), 31.2% (P = 0.006), 28.3% (P = 0.032), respectively. TMAO notably changed bile acid profiles, especially in serum, the most prominent inductions were tauromuricholic acid (TMCA), deoxycholic acid (DCA) and cholic acid (CA). Mechanically, TMAO inhibited hepatic bile acid synthesis by specifically repressing the classical bile acid synthesis pathway, which might be mediated by activation of small heterodimer partner (SHP) and farnesoid X receptor (FXR). CONCLUSIONS: These findings suggested that TMAO accelerated aortic lesion formation in apoE(-/-) mice by altering bile acid profiles, further activating nuclear receptor FXR and SHP to inhibit bile acid synthesis by reducing Cyp7a1 expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。