Differences in structure, dynamics, and zinc coordination between isoforms of human ubiquitin ligase UBE3A.

阅读:3
作者:Bregnard Thomas A, Fairchild Daniel, Chen Xiang, Erlandsen Heidi, Tarasov Sergey G, Walters Kylie J, Korzhnev Dmitry M, Bezsonova Irina
Abnormalities in the expression of the ubiquitin ligase UBE3A (ubiquitin-protein ligase E3A)/E6AP (human papillomavirus E6-associated protein) are implicated in neurological disorders including Angelman syndrome and autism. Human UBE3A is expressed as three protein isoforms that differ in their abundance and subcellular localization. While previous studies indicate isoform-specific functions, the distinct roles of each isoform in human development remain unknown. The isoforms differ only by an extension at the N-terminal end of the AZUL (N-terminal zinc [Zn]-binding domain Amino-terminal Zn finger of the UBE3A Ligase) domain, which tethers UBE3A to the proteasome by interaction with proteasomal subunit Rpn10. Differences in the structure and biophysical properties of UBE3A isoforms likely contribute to their individual functions. Here, we use a combination of NMR spectroscopy and other biophysical and biochemical techniques to identify differences in structure, dynamics, and the Rpn10 binding of the AZUL isoforms. We show that the AZUL domain structure is retained in all three isoforms with an extended N-terminal helix in longer isoforms 2 and 3. Accordingly, all isoforms could effectively associate with the Rpn10. Significant differences between the isoforms were found in their propensities to multimerize where only the longer isoforms 2 and 3 of the AZUL domain could form dimers, which may play a role in the previously observed oligomerization-dependent activation of the UBE3A. Moreover, our NMR relaxation dispersion experiments revealed a dynamic Zn-coordination site in isoforms 1 and 3, but not in isoform 2 of UBE3A, suggesting its possible isoform-specific sensitivity to oxidative stress. This structural and biophysical characterization of the isoforms will advance our understanding of isoform-specific functions of UBE3A and may contribute to future treatment strategies for Angelman syndrome and other UBE3A-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。