BACKGROUND: Forest above-ground biomass (AGB) accumulation is widely considered an important tool for mitigating climate change. However, the general pattern of forest AGB accumulation associated with age and climate gradients across various forest functional types at a global scale have remained unclear. In this study, we compiled a global AGB data set and applied a Bayesian statistical model to reveal the age-related dynamics of forest AGB accumulation, and to quantify the effects of mean annual temperature and annual precipitation on the initial AGB accumulation rate and on the saturated AGB characterizing the limit to AGB accumulation. RESULTS: The results of the study suggest that mean annual temperature has a significant positive effect on the initial AGB accumulation rate in needleleaf evergreen forest, and a negative effect in broadleaf deciduous forest; whereas annual precipitation has a positive effect in broadleaf deciduous forest, and negative effect in broadleaf evergreen forest. The positive effect of mean annual temperature on the saturated AGB in broadleaf evergreen forest is greater than in broadleaf deciduous forest; annual precipitation has a greater negative effect on the saturated AGB in deciduous forests than in evergreen forests. Additionally, the difference of AGB accumulation rate across four forest functional types is closely correlated with the forest development stage at a given climate. CONCLUSIONS: The contrasting responses of AGB accumulation rate to mean annual temperature and precipitation across four forest functional types emphasizes the importance of incorporating the complexity of forest types into the models which are used in planning climate change mitigation. This study also highlights the high potential for further AGB growth in existing evergreen forests.
Effects of climate and plant functional types on forest above-ground biomass accumulation.
阅读:10
作者:Chen Xia, Luo Mingyu, Larjavaara Markku
| 期刊: | Carbon Balance Manag | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2023 Mar 22; 18(1):5 |
| doi: | 10.1186/s13021-023-00225-1 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
