Holliday junction resolution by At-HIGLE: an SLX1 lineage endonuclease from Arabidopsis thaliana with a novel in-built regulatory mechanism.

阅读:3
作者:Verma Prabha, Kumari Poonam, Negi Shreya, Yadav Gitanjali, Gaur Vineet
Holliday junction is the key homologous recombination intermediate, resolved by structure-selective endonucleases (SSEs). SLX1 is the most promiscuous SSE of the GIY-YIG nuclease superfamily. In fungi and animals, SLX1 nuclease activity relies on a non-enzymatic partner, SLX4, but no SLX1-SLX4 like complex has ever been characterized in plants. Plants exhibit specialized DNA repair and recombination machinery. Based on sequence similarity with the GIY-YIG nuclease domain of SLX1 proteins from fungi and animals, At-HIGLE was identified to be a possible SLX1 like nuclease from plants. Here, we elucidated the crystal structure of the At-HIGLE nuclease domain from Arabidopsis thaliana, establishing it as a member of the SLX1-lineage of the GIY-YIG superfamily with structural changes in DNA interacting regions. We show that At-HIGLE can process branched-DNA molecules without an SLX4 like protein. Unlike fungal SLX1, At-HIGLE exists as a catalytically active homodimer capable of generating two coordinated nicks during HJ resolution. Truncating the extended C-terminal region of At-HIGLE increases its catalytic activity, changes the nicking pattern, and monomerizes At-HIGLE. Overall, we elucidated the first structure of a plant SLX1-lineage protein, showed its HJ resolving activity independent of any regulatory protein, and identified an in-built novel regulatory mechanism engaging its C-terminal region.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。