Early detection of plant diseases is crucial for safeguarding crop yield, especially in regions vulnerable to food insecurity, such as Sub-Saharan Africa. One of the significant contributors to maize crop yield loss is the Northern Leaf Blight (NLB), which traditionally takes 14-21 days to visually manifest on maize. This study introduces a novel approach for detecting NLB as early as 4-5 days using Internet of Things (IoT) sensors, which can identify the disease before any visual symptoms appear. Utilizing Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) models, nonvisual measurements of Total Volatile Organic Compounds (VOCs) and ultrasound emissions from maize plants were captured and analyzed. A controlled experiment was conducted on four maize varieties, and the data obtained were used to develop and validate a hybrid CNN-LSTM model for VOC classification and an LSTM model for ultrasound anomaly detection. The hybrid CNN-LSTM model, enhanced with wavelet data preprocessing, achieved an F1 score of 0.96 and an Area under the ROC Curve (AUC) of 1.00. In contrast, the LSTM model exhibited an impressive 99.98% accuracy in identifying anomalies in ultrasound emissions. Our findings underscore the potential of IoT sensors in early disease detection, paving the way for innovative disease prevention strategies in agriculture. Future work will focus on optimizing the models for IoT device deployment, incorporating chatbot technology, and more sensor data will be incorporated for improved accuracy and evaluation of the models in a field environment.
Using wavelet transform and hybrid CNN - LSTM models on VOC & ultrasound IoT sensor data for non-visual maize disease detection.
阅读:3
作者:Maginga Theofrida Julius, Masabo Emmanuel, Bakunzibake Pierre, Kim Kwang Soo, Nsenga Jimmy
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2024 | 起止号: | 2024 Feb 17; 10(4):e26647 |
| doi: | 10.1016/j.heliyon.2024.e26647 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
