Acute kidney injury induced by renal ischemia-reperfusion (I/R) compromises microvascular density and predisposes to chronic kidney disease (CKD) and sodium-dependent hypertension. VEGF-121 was administered to rats fed a standard (0.4%) sodium diet at various times following recovery from I/R injury for up to 35 days. VEGF-121 had no effect on the initial loss of renal function, as indicated by serum creatinine levels measured 24 h after injury. Serum creatinine levels declined thereafter, indicative of renal repair. Rats were then switched to an elevated (4.0%) sodium diet for an additional 28 days to induce CKD. The 4.0% sodium diet enhanced renal hypertrophy, interstitial volume, albuminuria, and cardiac hypertrophy relative to postischemic animals maintained on the 0.4% sodium diet. Administration of VEGF-121 from day 0 to 14, day 0 to 35, or day 3 to 35 after I/R suppressed the effects of sodium diet on CKD development, while delayed administration of VEGF-121 from day 21 to 35 had no effect. Endothelial nitric oxide synthase protein levels were upregulated in postischemic animals, and this effect was significantly increased by the 4.0% sodium diet but was not influenced by prior treatment with VEGF. Conversely, microvascular density was preserved in postischemic animals treated with VEGF-121 relative to vehicle-treated postischemic animals. These data suggest that early, but not delayed, treatment with VEGF-121 can preserve vascular structure after ischemia and influence chronic renal function in response to elevated sodium intake.
VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury.
阅读:5
作者:Leonard Ellen C, Friedrich Jessica L, Basile David P
| 期刊: | American Journal of Physiology-Renal Physiology | 影响因子: | 3.400 |
| 时间: | 2008 | 起止号: | 2008 Dec;295(6):F1648-57 |
| doi: | 10.1152/ajprenal.00099.2008 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
