RAS mutations occur in a broad spectrum of human hematopoietic malignancies. Activating Ras mutations in blood cells leads to hematopoietic malignancies in mice. In murine hematopoietic stem cells (HSCs), mutant N-RasG12D activates Stat5 to dysregulate stem cell function. However, the underlying mechanism remains elusive. In this study, we demonstrate that Stat5 activation induced by a hyperactive Nras mutant, G12D, is dependent on Jak2 activity. Jak2 is activated in Nras mutant HSCs and progenitors (HSPCs), and inhibiting Jak2 with ruxolitinib significantly decreases Stat5 activation and HSPC hyper-proliferation in vivo in NrasG12D mice. Activation of Jak2-Stat5 is associated with downregulation of Socs2, an inhibitory effector of Jak2/Stat5. Restoration of Socs2 blocks NrasG12D HSC reconstitution in bone marrow transplant recipients. SOCS2 downregulation is also observed in human acute myeloid leukemia (AML) cells that carry RAS mutations. RAS mutant AML cells exhibited suppression of the enhancer active marker H3K27ac at the SOCS2 locus. Finally, restoration of SOCS2 in RAS mutant AML cells mitigated leukemic growth. Thus, we discovered a novel signaling feedback loop whereby hyperactive Ras signaling activates Jak2/Stat5 via suppression of Socs2.
Epigenetic downregulation of Socs2 contributes to mutant N-Ras-mediated hematopoietic dysregulation.
阅读:3
作者:Jin Xi, Ng Victor, Zhao Meiling, Liu Lu, Higashimoto Tomoyasu, Lee Zheng Hong, Chung Jooho, Chen Victor, Ney Gina, Kandarpa Malathi, Talpaz Moshe, Li Qing
| 期刊: | Disease Models & Mechanisms | 影响因子: | 3.300 |
| 时间: | 2022 | 起止号: | 2022 May 1; 15(5):dmm049088 |
| doi: | 10.1242/dmm.049088 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
