Leishmania parasites are heavily dependent on efficient iron acquisition from a tightly regulated host iron pool for survival and virulence. Prior studies uncovered multiple strategies adopted by the parasite to hijack the iron-regulatory network of macrophages. Despite these extensive studies with infected macrophages, there is limited knowledge of the effect of Leishmania infection on systemic iron homeostasis. This issue is particularly relevant for Leishmania major, which causes localized skin infection with minimal lymphatic spread. We show for the first time that L. major infection in the mouse footpad induced influx of iron at the site of infection through blood with simultaneous upregulation of transferrin receptor 1 and downregulation of phagolysosomal iron exporter Nramp1 expression in the footpad tissue. Interestingly, localized L. major infection had far-reaching effects beyond the infection site triggering anemia-like symptoms. This was evident from depleted physiological iron stores from the liver and bone marrow as well as reduced hemoglobin levels and deformed erythrocytes. The infected mice also developed splenomegaly with signs of splenic stress erythropoiesis as indicated by upregulation of several erythroid-related genes. These observations prompted us to provide oral iron supplementations to the L. major-infected mice, which resulted in a drastic reduction of the parasite load and restoration of iron homeostasis.
Localized Leishmania major infection disrupts systemic iron homeostasis that can be controlled by oral iron supplementation.
阅读:6
作者:Banerjee Sourav, Datta Rupak
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2023 | 起止号: | 2023 Aug;299(8):105064 |
| doi: | 10.1016/j.jbc.2023.105064 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
