This article presents an innovative approach using the Differential Transform Method (DTM) to analyze the vibration characteristics of cylindrical shells, integrating Taylor's series with Sander's classical theory. It demonstrates DTM's efficiency, accuracy, and potential as an alternative method. The study introduces a novel application of the DTM in exploring the free vibration of cylindrical shells, detailing a technique to address challenges such as normalization, linear solution methodologies, and parameter derivative modifications. A dimensionless parameter analysis evaluates the impact of length, radius, thickness, and modulus of elasticity. Comparative analysis with Hybrid Finite Element Method (FEM) data and validation against existing literature highlights DTM's precision and reliability. In conclusion, DTM offers a robust solution for the eigenvalue problem in coupled differential equations, providing accurate vibration parameters. Additionally, an important relationship between the modulus of elasticity and frequency in the dimensionless state was obtained.
Dynamic examination of closed cylindrical shells utilizing the differential transform method.
阅读:3
作者:Khosravi Amir Esmaeel, Shahabian Farzad, Aftabi Sani Ahmad
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Jul 3; 14(1):15290 |
| doi: | 10.1038/s41598-024-66095-w | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
