The therapeutic efficacy of cuproptosis, ferroptosis, and apoptosis is hindered by inadequate intracellular copper and iron levels, hypoxia, and elevated glutathione (GSH) expression in tumor cells. Thermoelectric technology is an emerging frontier in medical therapy that aims to achieve efficient thermal and electrical transport characteristics within a narrow thermal range for biological systems. Here, we systematically constructed biodegradable Cu(2)MnS(3-x)-PEG/glucose oxidase (MCPG) with sulfur vacancies (S(V)) using photothermoelectric catalysis (PTEC), photothermal-enhanced enzyme catalysis, and starvation therapy. This triggers GSH consumption and disrupts intracellular redox homeostasis, leading to immunogenic cell death. Under 1064Â nm laser irradiation, MCPG enriched with S(V), owing to doping, generates a local temperature gradient that activates PTEC and produces toxic reactive oxygen species (ROS). Hydroxyl radicals and oxygen are generated through peroxide and catalase-like processes. Increased oxygen levels alleviate tumor hypoxia, whereas hydrogen peroxide production from glycometabolism provides sufficient ROS for a cascade catalytic reaction, establishing a self-reinforcing positive mechanism. Density functional theory calculations demonstrated that vacancy defects effectively enhanced enzyme catalytic activity. Multimodal imaging-guided synergistic therapy not only damages tumor cells, but also elicits an antitumor immune response to inhibit tumor metastasis. This study offers novel insights into the cuproptosis/ferroptosis/apoptosis pathways of Cu-based PTEC nanozymes.
Designing a Sulfur Vacancy Redox Disruptor for Photothermoelectric and Cascade-Catalytic-Driven Cuproptosis-Ferroptosis-Apoptosis Therapy.
阅读:5
作者:Xu Mengshu, Liu Jingwei, Feng Lili, Hu Jiahe, Guo Wei, Lin Huiming, Liu Bin, Zhu Yanlin, Li Shuyao, Berdimurodov Elyor, Sharipov Avez, Yang Piaoping
| 期刊: | Nano-Micro Letters | 影响因子: | 36.300 |
| 时间: | 2025 | 起止号: | 2025 Jul 4; 17(1):321 |
| doi: | 10.1007/s40820-025-01828-8 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
