Plexins are single-pass transmembrane receptors that bind the axon guidance molecules semaphorins. Single-pass transmembrane proteins are an important class of receptors that display a wide variety of activation mechanisms, often involving ligand-dependent dimerization or conformational changes. Resolving the activation mechanism and dimerization state of these receptors is extremely challenging, especially in a live-cell environment. Here, we report on the dimerization state of PlexinA4 and its response to activation by semaphorin binding. Semaphorins are dimeric molecules that activate plexin by binding two copies of plexin simultaneously and inducing formation of a specific active dimer of plexin. An open question is whether there are preexisting plexin dimers that could act as autoinhibitory complexes. We address these questions with pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS is a two-color fluorescence microscopy method that is directly sensitive to protein dimerization in a live-cell environment. With PIE-FCCS, we show that inactive PlexinA4 is dimerized in the live-cell plasma membrane. By comparing the cross correlation of full-length PlexinA4 to control proteins and plexin mutants, we show that dimerization of inactive PlexinA4 requires the Sema domain, but not the cytoplasmic domain. Ligand stimulation with Sema6A does not change the degree of cross correlation, indicating that plexin activation does not lead to higher-order oligomerization. Together, the results suggest that semaphorin activates plexin by disrupting an inhibitory plexin dimer and inducing the active dimer.
Class A Plexins Are Organized as Preformed Inactive Dimers on the Cell Surface.
阅读:7
作者:Marita Morgan, Wang Yuxiao, Kaliszewski Megan J, Skinner Kevin C, Comar William D, Shi Xiaojun, Dasari Pranathi, Zhang Xuewu, Smith Adam W
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2015 | 起止号: | 2015 Nov 3; 109(9):1937-45 |
| doi: | 10.1016/j.bpj.2015.04.043 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
