The main purpose of this study was to degrade total petroleum hydrocarbons (TPHs) from contaminated soil in batch microcosm reactors. Native soil fungi isolated from the same petroleum-polluted soil and ligninolytic fungal strains were screened and applied in the treatment of soil-contaminated microcosms in aerobic conditions. The bioaugmentation processes were carried out using selected hydrocarbonoclastic fungal strains in mono or co-cultures. Results demonstrated the petroleum-degrading potential of six fungal isolates, namely KBR1 and KBR8 (indigenous) and KBR1-1, KB4, KB2 and LB3 (exogenous). Based on the molecular and phylogenetic analysis, KBR1 and KB8 were identified as Aspergillus niger [MW699896] and tubingensis [MW699895], while KBR1-1, KB4, KB2 and LB3 were affiliated with the genera Syncephalastrum sp. [MZ817958], Paecilomyces formosus [MW699897], Fusarium chlamydosporum [MZ817957] and Coniochaeta sp. [MW699893], respectively. The highest rate of TPH degradation was recorded in soil microcosm treatments (SMT) after 60 days by inoculation with Paecilomyces formosus 97 ± 2.54%, followed by bioaugmentation with the native strain Aspergillus niger (92 ± 1.83%) and then by the fungal consortium (84 ± 2.21%). The statistical analysis of the results showed significant differences.
Petroleum-Degrading Fungal Isolates for the Treatment of Soil Microcosms.
阅读:6
作者:Daâssi Dalel, Almaghrabi Fatimah Qabil
| 期刊: | Microorganisms | 影响因子: | 4.200 |
| 时间: | 2023 | 起止号: | 2023 May 22; 11(5):1351 |
| doi: | 10.3390/microorganisms11051351 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
