For the measurement of compound-specific isotope ratios by liquid chromatography isotope ratio mass spectrometry (LC-IRMS), complete mineralization of organic compounds to a single species of measurement gas is required so that isotopic fractionation can be minimized and corrected by identical treatment with standards. The established use of peroxydisulfate in an acidic environment has its limitations, especially when it comes to the complete oxidation of nitrogen-containing compounds with aromatic ring systems. Under acidic oxidation conditions, ammonium and nitrate were identified as the main nitrogen containing mineralization products of the oxidation of different model compounds. In contrast to the oxidation in an acidic environment, alkaline peroxydisulfate oxidation leads to nitrate as a final mineralization product. The concept of alkaline oxidation was transferred from large-scale batch experiments to a commercially available oxidation reactor used in LC-IRMS systems. The obtained nitrate recoveries indicate that alkaline oxidation could be a promising step towards the measurement of compound-specific nitrogen isotope ratios by LC-IMRS. In our work, we show that alkaline peroxydisulfate oxidation allows faster and more complete mineralization of nitrogen-containing compounds. For several model compounds, 63 to 100% of the initially present nitrogen was converted to nitrate within a reaction time of 43Â s.
Alkaline persulfate oxidation as an intermediate step for the development of a wet chemical oxidation interface for compound-specific δ(15)N analysis by LC-IRMS.
阅读:8
作者:Köster Daniel, Hesse Tobias, Niemann Felix, Jochmann Maik A, Schmidt Torsten C
| 期刊: | Analytical and Bioanalytical Chemistry | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Apr;417(10):2085-2096 |
| doi: | 10.1007/s00216-025-05795-2 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
