A conserved switch controls virulence, sporulation, and motility in C. difficile.

阅读:3
作者:DiCandia Michael A, Edwards Adrianne N, Alcaraz Ysabella B, Monteiro Marcos P, Lee Cheyenne D, Vargas Cuebas Germán, Bagchi Pritha, McBride Shonna M
Spore formation is required for environmental survival and transmission of the human enteropathogenic Clostridioides difficile. In all bacterial spore formers, sporulation is regulated through activation of the master response regulator, Spo0A. However, the factors and mechanisms that directly regulate C. difficile Spo0A activity are not defined. In the well-studied Bacillus species, Spo0A is directly inactivated by Spo0E, a small phosphatase. To understand Spo0E function in C. difficile, we created a null mutation of the spo0E ortholog and assessed sporulation and physiology. The spo0E mutant produced significantly more spores, demonstrating Spo0E represses C. difficile sporulation. Unexpectedly, the spo0E mutant also exhibited increased motility and toxin production, and enhanced virulence in animal infections. We uncovered that Spo0E interacts with both Spo0A and the toxin and motility regulator, RstA. Direct interactions between Spo0A, Spo0E, and RstA constitute a previously unknown molecular switch that coordinates sporulation with motility and toxin production. Reinvestigation of Spo0E function in B. subtilis revealed that Spo0E induced motility, demonstrating Spo0E regulation of motility and sporulation among divergent species. Further, 3D structural analyses of Spo0E revealed specific and exclusive interactions between Spo0E and binding partners in C. difficile and B. subtilis that provide insight into the conservation of this regulatory mechanism among different species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。