Some plants engage in permanent, vertically transmitted symbioses with bacteria. Often, these bacteria are hosted extracellularly within structures on the leaves, where they produce specialized bioactive metabolites that benefit their host. These associations are highly specific, with one plant species associating with a single bacterial species, but little is known about how these symbioses originate and how specificity is maintained. In this study, we show that the symbiotic association between a wild yam and a bacterium can be manipulated experimentally and that bacteria-free plants are open to colonization by environmental bacteria. Through metabolic profiling, we show that the endophytic niche is rich in organic acids and intermediates of the tricarboxylic acid cycle cycle. Environmental bacteria capable of utilizing these acids, such as the soil bacterium Pseudomonas putida, readily colonize aposymbiotic plants. However, successful colonization is contingent upon the absence of the vertically transmitted symbiont or the impairment of its type VI secretion system. Unexpectedly for a vertically transmitted symbiosis, these findings suggest that microbe-microbe interactions, including antagonism, may play a crucial role in maintaining the specificity of an association. However, low transmission rates of synthetic symbionts provide evidence that transmission barriers or bottlenecks may still occur, further enforcing partner fidelity. Together, these results highlight the complexity of mechanisms underlying mutualistic associations, and provide insights into the evolution of bacterial leaf symbiosis.
Artificial symbiont replacement in a vertically transmitted plant symbiosis reveals a role for microbe-microbe interactions in enforcing specificity.
阅读:6
作者:Ninzatti Léa, Sana Thibault G, Acar Tessa, Moreau Sandra, Jardinaud Marie-Françoise, Marti Guillaume, Coen Olivier, Carlier Aurelien L
| 期刊: | ISME Journal | 影响因子: | 10.000 |
| 时间: | 2025 | 起止号: | 2025 Jan 2; 19(1):wraf177 |
| doi: | 10.1093/ismejo/wraf177 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
