Preventing and treating Alzheimer's disease require understanding the aggregation of amyloid beta 1-42 (Aβ1-42) to give oligomers, protofibrils, and fibrils. Here we describe footprinting of Aβ1-42 by hydroxyl radical-based fast photochemical oxidation of proteins (FPOP) and mass spectrometry (MS) to monitor the time-course of Aβ1-42 aggregation. We resolved five distinct stages characterized by two sigmoidal behaviors, showing the time-dependent transitions of monomers-paranuclei-protofibrils-fibrillar aggregates. Kinetic modeling allows deciphering the amounts and interconversion of the dominant Aβ1-42 species. Moreover, the irreversible footprinting probe provides insights into the kinetics of oligomerization and subsequent fibrillar growth by allowing the conformational changes of Aβ1-42 at subregional and even amino-acid-residue levels to be revealed. The middle domain of Aβ1-42 plays a major role in aggregation, whereas the N-terminus retains most of its solvent-accessibility during aggregation, and the hydrophobic C-terminus is involved to an intermediate extent. This approach affords an in situ, real-time monitoring of the solvent accessibility of Aβ1-42 at various stages of oligomerization, and provides new insights on site-specific aggregation of Aβ1-42 for a sample state beyond the capabilities of most other biophysical methods.
Conformational-Sensitive Fast Photochemical Oxidation of Proteins and Mass Spectrometry Characterize Amyloid Beta 1-42 Aggregation.
阅读:3
作者:Li Ke Sherry, Rempel Don L, Gross Michael L
| 期刊: | Journal of the American Chemical Society | 影响因子: | 15.600 |
| 时间: | 2016 | 起止号: | 2016 Sep 21; 138(37):12090-8 |
| doi: | 10.1021/jacs.6b07543 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
