Multivariate Streamflow Simulation Using Hybrid Deep Learning Models.

阅读:7
作者:Wegayehu Eyob Betru, Muluneh Fiseha Behulu
Reliable and accurate streamflow simulation has a vital role in water resource development, mainly in agriculture, environment, domestic water supply, hydropower generation, flood control, and early warning systems. In this context, these days, deep learning algorithms have got enormous attention due to their high-performance simulation capacity. In this study, we compared multilayer perceptron (MLP), long short-term memory (LSTM), and gated recurrent unit (GRU) with the proposed new hybrid models, including CNN-LSTM and CNN-GRU. Hence, we can simulate one-step daily streamflow in different agroclimatic conditions, rolling time windows, and a range of variable input combinations. The analysis used daily multivariate and multisite time series data collected from Awash River Basin (Borkena watershed: Ethiopia) and Tiber River Basin (Upper Tiber River Basin: Italy) stations. The datasets were subjected to rigorous quality control processes. Consequently, it rolled to a different time lag to remove noise in the time series and further split into training and testing datasets using a ratio of 80 : 20, respectively. Finally, the results showed that integrating the GRU layer with the convolutional layer and using monthly rolled average daily input time series could substantially improve the simulation of streamflow time series.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。