The deposition of matrix compounds significantly influences the effectiveness of matrix-assisted laser desorption/ionization (MALDI) Mass Spectrometry Imaging (MSI) experiments, impacting sensitivity, spatial resolution, and reproducibility. Dry deposition methods offer advantages by producing homogeneous matrix layers and minimizing analyte delocalization without the use of solvents. However, refining these techniques to precisely control matrix thickness, minimize heating temperatures, and ensure high-purity matrix layers is crucial for optimizing MALDI-MSI performance. Here, we present a novel approach utilizing low-temperature thermal evaporation (LTE) for organic matrix deposition under reduced vacuum pressure. Our method allows for reproducible control of matrix layer thickness, as demonstrated by linear calibration for two organic matrices, 2,5-dihydroxybenzoic acid (DHB) and 1,5-diaminonaphthalene (DAN). The environmental scanning electron microscopy images reveal a uniform distribution of small-sized matrix crystals, consistently on the sub-micrometer scale, across tissue slides following LTE deposition. Remarkably, LTE serves as an additional purification step for organic matrices, producing very pure layers irrespective of initial matrix purity. Furthermore, stability assessment of MALDI-MSI data from mouse brain sections coated with LTE-deposited DHB or DAN matrix indicates minimal impact on ionization efficiency, signal intensity, and image quality even after storage at -80 °C for 2 weeks, underscoring the robustness of LTE-deposited matrices for MSI applications. Comparative analysis with the spray-coating method highlights several advantages of LTE deposition, including enhanced ionization, reduced analyte diffusion, and improved MSI image quality.
Improving MALDI Mass Spectrometry Imaging Performance: Low-Temperature Thermal Evaporation for Controlled Matrix Deposition and Improved Image Quality.
阅读:3
作者:Mahamdi Toufik, Serna Cristina Gomez, Giné Roger, Rofes Jordi, Mohammed Shad Arif, Rà fols Pere, Correig Xavier, GarcÃa-Altares MarÃa, Hopf Carsten, Iakab Stefania-Alexandra, Yanes Oscar
| 期刊: | Journal of the American Society for Mass Spectrometry | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 May 7; 36(5):1100-1110 |
| doi: | 10.1021/jasms.5c00015 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
