Glucocorticoid enhances presenilin1-dependent Aβ production at ER's mitochondrial-associated membrane by downregulating Rer1 in neuronal cells

糖皮质激素通过下调神经元细胞中的Rer1,增强内质网线粒体相关膜上早老素1依赖的Aβ生成。

阅读:2
作者:Gee Euhn Choi ,Ji Yong Park ,Mo Ran Park ,Jee Hyeon Yoon ,Ho Jae Han

Abstract

Stress-induced release of glucocorticoid is an important amyloidogenic factor that upregulates amyloid precursor protein (APP) and β secretase 1 (BACE1) levels. Glucocorticoid also contributes to the pathogenesis of Alzheimer's disease (AD) by increasing ER-mitochondria connectivity, in which amyloid β (Aβ) processing occurs rigorously because of its lipid raft-rich characteristics. However, the mechanism by which glucocorticoid enhances γ-secretase activity in the mitochondrial-associated membrane of ER (MAM) and subsequent accumulation of mitochondrial Aβ is unclear. In this study, we determined how glucocorticoid enhances Aβ production in MAM using SH-SY5Y cells and ICR mice. First, we observed that cortisol-induced Aβ accumulation in mitochondria preceded its extracellular apposition by enhancing γ-secretase activity, which was the result of increased presenilin 1 (PSEN1) localization in MAM. Screening data revealed that cortisol selectively downregulated the ER retrieval protein Rer1, which triggered its maturation and subsequent entry into the endocytic secretory pathway of PSEN1. Accordingly, overexpression of RER1 reversed the deleterious effects of mitochondrial Aβ on mitochondrial respiratory function and neuronal cell viability. Notably, we found that cortisol guided the glucocorticoid receptor (GR) to bind directly to the RER1 promoter, thus trans-repressing its expression. Inhibiting GR function reduced Aβ accumulation at mitochondria and improved the outcome of a spatial memory task in mice exposed to corticosterone. Taken together, glucocorticoid enhances PSEN1-mediated Aβ generation at MAM by downregulating Rer1, which is a potential target at early stages of AD pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。