Identification of Bioactive Metabolites of Capirona macrophylla by Metabolomic Analysis, Molecular Docking, and In Vitro Antiparasitic Assays.

阅读:3
作者:Evaristo Joseph, Laia Elise de, Tavares Bruna, Mendonça Esdras, Grisostenes Larissa, Rodrigues Caroline, do Nascimento Welington, Garcia Carolina, Guterres Sheila, Nogueira Fábio, Zanchi Fernando, Evaristo Geisa
Capirona macrophylla is a Rubiaceae known as "mulateiro". Ethnobotanical extracts have been used for skin treatment and in the management of leishmaniasis and malaria. OBJECTIVES: The metabolites in aqueous extracts from wood bark, leaves, and stems were identified, and their in silico docking and in vitro cellular efficacy against Leishmania amazonensis and Plasmodium falciparum were evaluated. METHODS: The extracts were analyzed by UHPLC/HRMS(n) using untargeted metabolomics approach with MSDial, MSFinder, and GNPS software for metabolite identification and spectra clustering. The most abundant metabolites underwent molecular docking using AutoDock via PyRx, targeting the dihydroorotate dehydrogenase from Leishmania and P. falciparum, and evaluated through molecular dynamics simulations using Gromacs. In vitro biological assays were conducted on 60 HPLC-fractions against these parasites. RESULTS: Metabolomics analysis identified 5100 metabolites in ESI+ and 2839 in ESI- spectra among the "mulateiro" samples. GNPS clustering highlighted large clusters of quercetin and chlorogenic acid groups. The most abundant metabolites were isofraxidin, scopoletin, 5(S)-5-carboxystrictosidine, loliolide, quercetin, quinic acid, caffeoylquinic acid (and isomers), chlorogenic acid, neochlorogenic acid, tryptophan, N-acetyltryptophan, epicatechin, procyanidin, and kaempferol-3-O-robinoside-7-O-rhamnoside. Molecular docking pointed to 3,4-dicaffeoylquinic acid and kaempferol as promising inhibitors. The in vitro assays yielded four active HPLC-fractions against L. amazonensis with IC50 values ranging from 175.2 μg/mL to 194.8 μg/mL, and fraction G29 showed an IC50 of 119.8 μg/mL against P. falciparum. CONCLUSIONS: The ethnobotanical use of "mulateiro" wood bark tea as an antimalarial and antileishmanial agent was confirmed through in vitro assays. We speculate that these activities are attributed to linoleic acids and quinic acids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。