Investigation of the protein corona and biodistribution profile of polymeric nanoparticles for intra-amniotic delivery.

阅读:22
作者:Lynn Anna Y, Shin Kwangsoo, Eaton David A, Rose Micky, Zhang Xianzhi, Ene Madalina, Grundler Julian, Deschenes Emily, Rivero Rachel, Bracaglia Laura G, Glazer Peter M, Stitelman David H, Saltzman W Mark
When exposed to the biological environment, nanoparticles (NPs) form a protein corona that influences delivery profile. We present a study of protein corona formation and NP biodistribution in amniotic fluid (AF) for poly(lactic-co-glycolic acid) (PLGA) and poly(lactic-acid) (PLA) NPs, with and without polyethylene glycol (PEG), as well as poly(amine-co-ester)-PEG (PACE-PEG) NPs. The presence of surface PEG and polyvinyl alcohol (PVA) were characterized to investigate surfactant role in determining protein corona formation. The surface density of PEG groups demonstrated an inverse correlation with the total amount of protein surface adsorption. All PEGylated NPs exhibited a dense brush conformation and demonstrated higher levels of stability in AF than non-PEGylated NPs. The protein corona composition varied by core polymer, while the amount of protein adsorption varied by PEGylation status. In A549 cells, in vitro cellular association of each NP type correlated with the amount of albumin that was found in the protein corona. In vivo, only PEGylated NPs were able successfully distribute to fetal organs, likely due to the enhanced stability imparted by PEG. PLGA-PEG and PACE-PEG NPs had both high levels of albumin in the protein corona and high biodistribution to the fetal lung, consistent with the association with lung cells in vitro. PLA-PEG NPs distributed exclusively to the fetal bowel, which we propose is associated with known gastrointestinal targeting keratin proteins. By furthering our understanding of polymeric NP behavior in AF, this novel study provides a basis for optimization of intra-amniotic NP delivery systems targeting congenital pulmonary and gastrointestinal diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。