Efforts to improve the solar power conversion efficiencies of binary bulk heterojunction-type organic photovoltaic devices using an active layer consisting of a poly-(3-alkylthiophene) (P3AT) homopolymer and a suitable fullerene derivative face barriers caused by the intrinsic properties of homopolymers. To overcome such barriers, researchers might be able to chemically tailor homopolymers by means of monomer ratio-balanced block copolymerization to obtain preferable properties. Triblock copolymers consisting of three components-3-hexylthiophene (HT), 3-butylthiophene (BT), and 3-octylthiophene (OT)-were synthesized via Grignard metathesis (GRIM) polymerization. The component ratios of the synthesized block copolymers were virtually the same as the feeding ratios of the monomers, a fact which was verified using (1)H-NMR spectra. All the copolymers exhibited comparable crystalline and melting temperatures, which increased when one type of monomer became dominant. In addition, their power conversion efficiencies and photoluminescence properties were governed by the major components of the copolymers. Interestingly, the HT component-dominated block copolymer indicated the highest power conversion efficiency, comparable to that of its homopolymer, although its molecular weight was significantly shorter.
Influence of Block Ratio on Thermal, Optical, and Photovoltaic Properties of Poly(3-hexylthiophene)-b-poly(3-butylthiophene)-b-poly(3-octylthiophene).
阅读:4
作者:Nguyen Van Hai, Nguyen Thanh Danh, Song Jongwoo, An Jongdeok, Im Chan
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2022 | 起止号: | 2022 Dec 2; 27(23):8469 |
| doi: | 10.3390/molecules27238469 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
