Characterization of the interaction between diferric transferrin and transferrin receptor 2 by functional assays and atomic force microscopy.

阅读:5
作者:Ikuta Katsuya, Yersin Alexandre, Ikai Atsushi, Aisen Philip, Kohgo Yutaka
Transferrin receptor 2 (TfR2), a homologue of the classical transferrin receptor 1 (TfR1), is found in two isoforms, alpha and beta. Like TfR1, TfR2alpha is a type II membrane protein, but the beta form lacks transmembrane portions and therefore is likely to be an intracellular protein. To investigate the functional properties of TfR2alpha, we expressed the protein with FLAG tagging in transferrin-receptor-deficient Chinese hamster ovary cells. The association constant for the binding of diferric transferrin (Tf) to TfR2alpha is 5.6x10(6) M(-)(1), which is about 50 times lower than that for the binding of Tf to TfR1, with correspondingly reduced rates of iron uptake. Evidence for Tf internalization and recycling via TfR2alpha without degradation, as in the TfR1 pathway, was also found. The interaction of TfR2alpha with Tf was further investigated using atomic force microscopy, a powerful tool used for investigating the interaction between a ligand and its receptor at the single-molecule level on the living cell surface. Dynamic force microscopy reveals a difference in the interactions of Tf with TfR2alpha and TfR1, with Tf-TfR1 unbinding characterized by two energy barriers, while only one is present for Tf-TfR2. We speculate that this difference may reflect Tf binding to TfR2alpha by a single lobe, whereas two lobes of Tf participate in binding to TfR1. The difference in the binding properties of Tf to TfR1 and TfR2alpha may help account for the different physiological roles of the two receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。