Characterization of Lipophilicity and Blood Partitioning of Pyrrolizidine Alkaloids and Their N-Oxides In Vitro and In Silico for Toxicokinetic Modeling.

阅读:4
作者:Lehmann Anja, Haas Manuel, Taenzer Julian, Hamscher Gerd, Kloft Charlotte, These Anja, Hethey Christoph
Lipophilicity and blood partitioning are important determinants for predicting toxicokinetics using physiologically-based toxicokinetic modeling. In this study, the logarithm of the n-octanol : water partition coefficient and the blood-to-plasma concentration ratio were, for the first time, experimentally determined for the pyrrolizidine alkaloids intermedine, lasiocarpine, monocrotaline, retrorsine, and their N-oxides. Validated in vitro assays for determination of the n-octanol : water partition coefficient (miniaturized shake-flask method) and the blood-to-plasma conentration ratio (LC-MS/MS-based depletion assay) were compared to an ensemble of in silico models. The experimentally determined octanol : water partition coefficient indicates a higher affinity of pyrrolizidine alkaloids and their N-oxides to the aqueous compared to the organic phase. Depending on the method, in silico determined n-octanol : water partition coefficients overpredicted the experimental values by ≥ 1 log unit for three out of four pyrrolizidine alkaloids (SPARC), four out of six (CLOGP), five out of eight (KowWIN), and three out of eight (S+logP) pyrrolizidine alkaloids and their N-oxides. The blood-to-plasma concentration ratio obtained in vitro suggested a low binding affinity of pyrrolizidine alkaloids and their N-oxides towards red blood cells. For all eight pyrrolizidine alkaloids and their N-oxides, in silico predicted blood-to-plasma ratios deviated from experimental values by less than 50%. In conclusion, for physiologically-based toxicokinetic modeling of pyrrolizidine alkaloids and their N-oxides, the experimental octanol : water partition coefficient should be preferred, while the blood-to-plasma concentration ratio predicted by the acid/base classification model is a suitable surrogate for experimental data.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。