The protein kinase CK2 catalytic domain from Plasmodium falciparum: crystal structure, tyrosine kinase activity and inhibition.

阅读:7
作者:Ruiz-Carrillo David, Lin Jianqing, El Sahili Abbas, Wei Meng, Sze Siu Kwan, Cheung Peter C F, Doerig Christian, Lescar Julien
Malaria causes every year over half-a-million deaths. The emergence of parasites resistant to available treatments makes the identification of new targets and their inhibitors an urgent task for the development of novel anti-malaria drugs. Protein kinase CK2 is an evolutionary-conserved eukaryotic serine/threonine protein kinase that in Plasmodium falciparum (PfCK2) has been characterized as a promising target for chemotherapeutic intervention against malaria. Here we report a crystallographic structure of the catalytic domain of PfCK2α (D179S inactive single mutant) in complex with ATP at a resolution of 3.0 à . Compared to the human enzyme, the structure reveals a subtly altered ATP binding pocket comprising five substitutions in the vicinity of the adenine base, that together with potential allosteric sites, could be exploited to design novel inhibitors specifically targeting the Plasmodium enzyme. We provide evidence for the dual autophosphorylation of residues Thr(63) and Tyr(30) of PfCK2. We also show that CX4945, a human CK2 inhibitor in clinical trials against solid tumor cancers, is effective against PfCK2 with an IC(50) of 13.2 nM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。