Pea plants incubated in 15N2 rapidly accumulated labeled gamma-aminobutyrate (GABA) in the plant cytosol and in bacteroids of Rhizobium leguminosarum bv. viciae 3841. Two pathways of GABA metabolism were identified in R. leguminosarum 3841. In the first, glutamate is formed by GABA aminotransferase (GabT), transferring the amino group from GABA to 2-oxoglutarate. In the second, alanine is formed by two omega-aminotransferases (OpaA and OpaB), transferring the amino group from GABA to pyruvate. While the gabT mutant and the gabT opaA double mutant grew on GABA as a nitrogen source, the final triple mutant did not. The semialdehyde released from GABA by transamination is oxidized by succinate semialdehyde dehydrogenase (GabD). Five of six potential GabD proteins in R. leguminosarum bv. viciae 3841 (GabD1, -D2, -D3, -D4, and -D5) were shown by expression analysis to have this activity. However, only mutations of GabD1, GabD2, and GabD4 were required to prevent utilization of GABA as the sole nitrogen source in culture. The specific enzyme activities of GabT, Opa, and GabD were highly elevated in bacteroids relative to cultured bacteria. This was due to elevated expression of gabT, opaA, gabD1, and gabD2 in nodules. Strains mutated in aminotransferase and succinate semialdehyde dehydrogenases (gabT, opaA, or opaB and gabD1, gabD2, or gabD4, respectively) that cannot use GABA in culture still fixed nitrogen on plants. While GABA catabolism alone is not essential for N2 fixation in bacteroids, it may have a role in energy generation and in bypassing the decarboxylating arm of the tricarboxylic acid cycle.
Pathway of gamma-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis.
阅读:5
作者:Prell Jurgen, Bourdès Alexandre, Karunakaran Ramakrishnan, Lopez-Gomez Miguel, Poole Philip
| 期刊: | Journal of Bacteriology | 影响因子: | 3.000 |
| 时间: | 2009 | 起止号: | 2009 Apr;191(7):2177-86 |
| doi: | 10.1128/JB.01714-08 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
