Structures of Native Doublet Microtubules from Trichomonas vaginalis Reveal Parasite-Specific Proteins.

阅读:11
作者:Stevens Alexander, Kashyap Saarang, Crofut Ethan H, Wang Shuqi E, Muratore Katherine A, Johnson Patricia J, Zhou Z Hong
Doublet microtubules (DMTs) are flagellar components required for the protist Trichomonas vaginalis (Tv) to swim through the human genitourinary tract to cause trichomoniasis, the most common non-viral sexually transmitted disease. Lack of structures of Tv's DMT (Tv-DMT) has prevented structure-guided drug design to manage Tv infection. Here, we determine the 16 nm, 32 nm, 48 nm and 96 nm-repeat structures of native Tv-DMT at resolution ranging from 3.4 to 4.4 à by cryogenic electron microscopy (cryoEM) and built an atomic model for the entire Tv-DMT. These structures show that Tv-DMT is composed of 30 different proteins, including the α- and β-tubulin, 19 microtubule inner proteins (MIPs) and 9 microtubule outer proteins. While the A-tubule of Tv-DMT is simplistic compared to DMTs of other organisms, the B-tubule of Tv-DMT features parasite-specific proteins, such as TvFAP40 and TvFAP35. Notably, TvFAP40 and TvFAP35 form filaments near the inner and outer junctions, respectively, and interface with stabilizing MIPs. This atomic model of the Tv-DMT highlights diversity of eukaryotic motility machineries and provides a structural framework to inform rational design of therapeutics against trichomoniasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。