Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723.

阅读:9
作者:Dai MingHua, Copley Shelley D
Pentachlorophenol (PCP), a highly toxic anthropogenic pesticide, can be mineralized by Sphingobium chlorophenolicum, a gram-negative bacterium isolated from PCP-contaminated soil. However, degradation of PCP is slow and S. chlorophenolicum cannot tolerate high levels of PCP. We have used genome shuffling to improve the degradation of PCP by S. chlorophenolicum. We have obtained several strains that degrade PCP faster and tolerate higher levels of PCP than the wild-type strain. Several strains obtained after the third round of shuffling can grow on one-quarter-strength tryptic soy broth plates containing 6 to 8 mM PCP, while the original strain cannot grow in the presence of PCP at concentrations higher than 0.6 mM. Some of the mutants are able to completely degrade 3 mM PCP in one-quarter-strength tryptic soy broth, whereas no degradation can be achieved by the wild-type strain. Analysis of several improved strains suggests that the improved phenotypes are due to various combinations of mutations leading to an enhanced growth rate, constitutive expression of the PCP degradation genes, and enhanced resistance to the toxicity of PCP and its metabolites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。