Antioxidant Responses and Phytochemical Accumulation in Raphanus Species Sprouts through Elicitors and Predictive Models under High Temperature Stress.

阅读:8
作者:Toro María-Trinidad, Fustos-Toribio Roberto, Ortiz Jaime, Becerra José, Zapata Nelson, López-Belchí María Dolores
Crop production is being impacted by higher temperatures, which can decrease food yield and pose a threat to human nutrition. In the current study, edible and wild radish sprouts were exposed to elevated growth temperatures along with the exogenous application of various elicitors to activate defense mechanisms. Developmental traits, oxidative damage, glucosinolate and anthocyanin content, and antioxidant capacity were evaluated alongside the development of a predictive model. A combination of four elicitors (citric acid, methyl jasmonate-MeJa, chitosan, and K(2)SO(4)) and high temperatures were applied. The accumulation of bioactives was significantly enhanced through the application of two elicitors, K(2)SO(4) and methyl jasmonate (MeJa). The combination of high temperature with MeJa prominently activated oxidative mechanisms. Consequently, an artificial neural network was developed to predict the behavior of MeJa and temperature, providing a valuable projection of plant growth responses. This study demonstrates that the use of elicitors and predictive analytics serves as an effective tool to investigate responses and enhance the nutritional value of Raphanus species sprouts under future conditions of increased temperature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。